Skepxels: Spatio-temporal Image Representation of Human Skeleton Joints for Action Recognition

نویسندگان

  • Jian Liu
  • Naveed Akhtar
  • Ajmal Mian
چکیده

Human skeleton joints are popular for action analysis since they can be easily extracted from videos to discard background noises. However, current skeleton representations do not fully benefit from machine learning with CNNs. We propose “Skepxels” a spatio-temporal representation for skeleton sequences to fully exploit the “local” correlations between joints using the 2D convolution kernels of CNN. We transform skeleton videos into images of flexible dimensions using Skepxels and develop a CNN-based framework for effective human action recognition using the resulting images. Skepxels encode rich spatio-temporal information about the skeleton joints in the frames by maximizing a unique distance metric, defined collaboratively over the distinct joint arrangements used in the skeletal image. Moreover, they are flexible in encoding compound semantic notions such as location and speed of the joints. The proposed action recognition exploits the representation in a hierarchical manner by first capturing the micro-temporal relations between the skeleton joints with the Skepxels and then exploiting their macro-temporal relations by computing the Fourier Temporal Pyramids over the CNN features of the skeletal images. We extend the Inception-ResNet CNN architecture with the proposed method and improve the state-of-the-art accuracy by 4.4% on the large scale NTU human activity dataset. On the medium-sized N-UCLA and UTH-MHAD datasets, our method outperforms the existing results by 5.7% and 9.3% respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced skeleton visualization for view invariant human action recognition

Human action recognition based on skeletons has wide applications in human–computer interaction and intelligent surveillance. However, view variations and noisy data bring challenges to this task. What’s more, it remains a problem to effectively represent spatio-temporal skeleton sequences. To solve these problems in one goal, this work presents an enhanced skeleton visualization method for vie...

متن کامل

Skeleton-Based Action Recognition Using Spatio-Temporal LSTM Network with Trust Gates

Skeleton-based human action recognition has attracted a lot of research attention during the past few years. Recent works attempted to utilize recurrent neural networks to model the temporal dependencies between the 3D positional configurations of human body joints for better analysis of human activities in the skeletal data. The proposed work extends this idea to spatial domain as well as temp...

متن کامل

Action recognition using length-variable edge trajectory and spatio-temporal motion skeleton descriptor

Representing the features of different types of human action in unconstrained videos is a challenging task due to camera motion, cluttered background, and occlusions. This paper aims to obtain effective and compact action representation with length-variable edge trajectory (LV-ET) and spatio-temporal motion skeleton (STMS). First, in order to better describe the long-term motion information for...

متن کامل

Action Recognition with Visual Attention on Skeleton Images

Action recognition with 3D skeleton sequences is becoming popular due to its speed and robustness. The recently proposed Convolutional Neural Networks (CNN) based methods have shown good performance in learning spatio-temporal representations for skeleton sequences. Despite the good recognition accuracy achieved by previous CNN based methods, there exist two problems that potentially limit the ...

متن کامل

An End-to-End Spatio-Temporal Attention Model for Human Action Recognition from Skeleton Data

Human action recognition is an important task in computer vision. Extracting discriminative spatial and temporal features to model the spatial and temporal evolutions of different actions plays a key role in accomplishing this task. In this work, we propose an end-to-end spatial and temporal attention model for human action recognition from skeleton data. We build our model on top of the Recurr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.05941  شماره 

صفحات  -

تاریخ انتشار 2017